Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The addition-reaction product of 1,1,1,4,4,4-hexachloro-1,4-disilabutane with N-methylimidazole

Karl Hensen, ${ }^{\text {a }}$ Björn Spangenberg ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b* }}$

${ }^{\text {a }}$ Institut für Physikalische und Theoretische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 7 June 2000
Accepted 29 June 2000

The product of the addition reaction of 1,1,1,4,4,4-hexachloro-1,4-disilabutane with N-methylimidazole is μ-ethylene- $C^{1}: C^{2}$ -bis[dichlorotris(1-methylimidazole- N^{3}) silicon(IV)] dichloride, $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{Cl}_{4} \mathrm{~N}_{12} \mathrm{Si}_{2}{ }^{2+} \cdot 2 \mathrm{Cl}^{-}$. Two of the six Cl atoms are replaced by aromatic nitrogen bases and the coordination sphere of silicon is extended from four to six. The molecule is located on a crystallographic centre of inversion. The environment around the Si atom can be described as a slightly distorted octahedron with the Cl atoms occupying axial positions and the three N-methylimidazole ligands and the ethylene bridge in the equatorial plane.

Comment

In recent years, the extension of the coordination sphere of silicon in complexes with organic nitrogen bases has been the subject of numerous studies (Bechstein et al., 1990; Chuit et al., 1993; Kane et al., 1998; Hensen, Kettner et al., 1998; Hensen, Mayr-Stein, Stumpf et al., 2000). Several complexes of silicon halides are already known, but little is known about the adducts of compounds containing more than one silicon

(I)
centre. We present here the product of the addition reaction of 1,1,1,4,4,4-hexachloro-1,4-disilabutane with N-methylimid-
azole, namely μ-ethylene- $C^{1}: C^{2}$-bis[dichlorotris(1-methyl-imidazole- N^{3}) silicon(IV)] dichloride, (I).

Only two of the six Cl atoms are replaced by aromatic nitrogen bases, but the coordination sphere of silicon is extended from four to six. The reaction product is a dication (located on a crystallographic centre of inversion) crystallizing with two chloride ions. Compared with other hexacoordinated complexes of halogen silanes with tertiary nitrogen bases, the current product shows a remarkable new feature, i.e. it bears two silicon centres that both carry a formal charge of +1 . In contrast, until now, only neutral addition complexes, e.g. dichlorobis(pyridine)silane (Hensen, Stumpf et al., 1998), tetrachlorobis(4-methylpyridine)silicon (Hensen, Mayr-Stein, Spangenberg \& Bolte, 2000) and tetrachlorobis(3,4-dimethylpyridine)silicon (Hensen, Mayr-Stein, Spangenberg, Bolte \& Rühl, 2000), or dicationic complexes, e.g. $\mathrm{SiHCl}(N-$ methylimidazole) ${ }_{4}{ }^{2+}$ (Hensen, Kettner et al., 1998), $\mathrm{SiCl}_{2}(\mathrm{~N}-$ methylimidazole) 4^{2+} with different counter-ions and solvent molecules (Hensen, Mayr-Stein, Stumpf et al., 2000), and bis($2,2^{\prime}$-bipyridyl- N, N^{\prime})dichlorosilicon (Hensen, Mayr-Stein, Rühl \& Bolte, 2000), have been obtained. The current structure is the first example of a hexacoordinated silicon centre where only one halogen atom is removed from the coordination sphere of the starting material, thus the ratio of removed halogen ligands to newly added base ligands of 1:3 is observed for the first time. The silicon centres appear in a nearly ideal octahedral environment, where the two remaining chlorine ligands occupy axial positions. The three N-methylimidazole groups and the ethylene bridge lie in the equatorial plane. There are only minor deviations from perfect octahedral coordination: all bond angles involving C 1 are bigger than 90°; whereas the two $\mathrm{Si}-\mathrm{N}$ bonds trans to each other are of nearly the same length, the $\mathrm{Si}-\mathrm{N}$ bond trans to C 1 is slightly shorter than the other two; the two $\mathrm{Si}-\mathrm{Cl}$ bonds differ by approximately $0.05 \AA$. Compared with the free Lewis acid 1,1,1,4,4,4-hexachloro-1,4-disilabutane (Mitzel et al., 1997), in which the $\mathrm{Si}-\mathrm{Cl}$ bond lengths range from 2.0225 (6) to

Figure 1
Perspective view of (I) with the atomic numbering scheme; displacement ellipsoids are at the 50% probability level. The symmetry code is as in Table 1.
2.0283 (6) \AA, those in the current structure are considerably longer. For comparison, a search of the Cambridge Structural Database (Version 5.19, April 2000; Allen \& Kennard, 1993) yielded $39 \mathrm{Si}-\mathrm{Cl}$ fragments (hexacoordinated Si , monocoordinated Cl) with a mean $\mathrm{Si}-\mathrm{Cl}$ bond length of 2.20 (5) \AA. Furthermore, it is remarkable that the $\mathrm{Si}-\mathrm{C}-\mathrm{C}$ angle is widened to nearly 120°, a fact that can be attributed to the bulky substituents at the silicon centres. The $\mathrm{C}-\mathrm{C}$ bond length, on the other hand, shows a normal value. The crystal packing is stabilized by short contacts between the Cl^{-}ion and various H atoms (Table 2).

Experimental

To 1,1,1,4,4,4-hexachloro-1,4-disilabutane (5 ml) in chloroform (25 ml) was added N-methylimidazole and the reaction was monitored by measuring the temperature. After approximately 2 h , the precipitated solid was isolated, washed and dried. Crystals of (I) were obtained by subliming the powder in an evacuated glass ampoule for several days at 315 K .

Crystal data

```
\(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{Cl}_{4} \mathrm{~N}_{12} \mathrm{Si}_{2}{ }^{2+} .2 \mathrm{Cl}^{-}\)
\(M_{r}=789.58\)
Monoclinic, \(P 2_{1} / n\)
\(a=13.8976\) (1) \(\AA\)
\(b=7.5553\) (1) \(\AA\)
\(c=17.3704\) (2) \(\AA\)
\(\beta=97.947\) (1) \({ }^{\circ}\)
\(V=1806.39(3) \AA^{3}\)
\(Z=2\)
```

```
\(D_{x}=1.452 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 5816
    reflections
\(\theta=1-25^{\circ}\)
\(\mu=0.581 \mathrm{~mm}^{-1}\)
\(T=133 \mathrm{~K}\)
Block, colourless
\(0.30 \times 0.20 \times 0.20 \mathrm{~mm}\)
```


Data collection

Siemens CCD three-circle diffract-	$R_{\text {int }}=0.057$
\quad ometer	$\theta_{\max }=26.41^{\circ}$
ω scans	$h=-17 \rightarrow 17$
Absorption correction: empirical	$k=-9 \rightarrow 9$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$l=-21 \rightarrow 21$
$T_{\min }=0.84, T_{\max }=0.90$	274 standard reflections
22213 measured reflections	frequency: 900 min
3679 independent reflections	intensity decay: none

3679 independent reflections
2894 reflections with $I>2 \sigma(I)$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Si1-C1	$1.921(2)$	$\mathrm{Si} 1-\mathrm{Cl} 11$	$2.2351(9)$
$\mathrm{Si} 1-\mathrm{N} 31$	$1.938(2)$	$\mathrm{Si} 1-\mathrm{C} 22$	$2.2840(8)$
$\mathrm{Si} 1-\mathrm{N} 11$	$1.953(2)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.531(5)$
$\mathrm{Si} 1-\mathrm{N} 21$	$1.954(2)$		
			$91.68(6)$
$\mathrm{C} 1-\mathrm{Si} 1-\mathrm{N} 31$	$177.81(10)$	$\mathrm{N} 11-\mathrm{Si} 1-\mathrm{Cl} 1$	$89.11(6)$
$\mathrm{C} 1-\mathrm{Si} 1-\mathrm{N} 11$	$93.10(9)$	$\mathrm{N} 21-\mathrm{Si} 1-\mathrm{Cl} 1$	$90.73(8)$
$\mathrm{N} 31-\mathrm{Si} 1-\mathrm{N} 11$	$85.97(8)$	$\mathrm{C} 1-\mathrm{Si} 1-\mathrm{Cl} 2$	$87.29(6)$
$\mathrm{C} 1-\mathrm{Si} 1-\mathrm{N} 21$	$95.67(10)$	$\mathrm{N} 31-\mathrm{Si} 1-\mathrm{Cl} 2$	$90.01(6)$
$\mathrm{N} 31-\mathrm{Si} 1-\mathrm{N} 21$	$85.20(8)$	$\mathrm{N} 11-\mathrm{Si} 1-\mathrm{Cl} 2$	$88.41(6)$
$\mathrm{N} 11-\mathrm{Si} 1-\mathrm{N} 21$	$171.10(9)$	$\mathrm{N} 21-\mathrm{Si} 1-\mathrm{Cl} 2$	$174.46(4)$
$\mathrm{C} 1-\mathrm{Si} 1-\mathrm{Cl} 1$	$94.45(8)$	$\mathrm{Cl} 1-\mathrm{Si} 1-\mathrm{Cl} 2$	$119.1(2)$
$\mathrm{N} 31-\mathrm{Si} 1-\mathrm{Cl} 1$	$87.56(6)$	$\mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 1-\mathrm{Si} 1$	

Symmetry code: (i) $2-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{Cl}^{3}$	0.95	2.61	$3.450(3)$	148
$\mathrm{C} 33-\mathrm{H} 33 A \cdots \mathrm{Cl} 3^{\mathrm{ii}}$	0.98	2.61	$3.540(3)$	159
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cl} 3$	0.95	2.68	$3.524(3)$	149

Symmetry code: (i) $1-x,-y, 1-z$; (ii) $1-x, 1-y, 1-z$.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0273 P)^{2}\right. \\
&+1.7731 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.085$
$S=1.078$
211 parameters
H -atom parameters constrained

All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters $[U(\mathrm{H})=$ $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ or $\left.U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ using a riding model with $\mathrm{C}-$ $\mathrm{H}($ aromatic $)=0.95 \AA, \mathrm{C}-\mathrm{H}($ secondary $)=0.99 \AA$ or $\mathrm{C}-\mathrm{H}($ methyl $)=$ $0.98 \AA$. The methyl groups were allowed to rotate about their local threefold axis.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1418). Services for accessing these data are described at the back of the journal.

References

Allen, F. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Bechstein, O., Ziemer, B., Hass, D., Troyanov, S. I., Rybakov, V. B. \& Maso, G. N. (1990). Z. Anorg. Allg. Chem. 582, 211-216.

Chuit, C., Corriu, R. J. P., Reye, C. \& Young, J. C. (1993). Chem. Rev. 93, 13711448.

Hensen, K., Kettner, M., Pickel, P. \& Bolte, M. (1998). Z. Naturforsch. Teil B, 54, 200-208.
Hensen, K., Mayr-Stein, R., Rühl, S. \& Bolte, M. (2000). Acta Cryst. C56, $607-$ 609.

Hensen, K., Mayr-Stein, R., Spangenberg, B. \& Bolte, M. (2000). Acta Cryst. C56, 610-613.
Hensen, K., Mayr-Stein, R., Spangenberg, B., Bolte, M. \& Rühl, S. (2000). Z. Naturforsch. Teil B, 55, 248-252.
Hensen, K., Mayr-Stein, R., Stumpf, T., Pickel, P., Bolte, M. \& Fleischer, H. (2000). J. Chem. Soc. Dalton Trans. pp. 473-477.

Hensen, K., Stumpf, T., Bolte, M., Näther, C. \& Fleischer, H. (1998). J. Am Chem. Soc. 120, 10402-10408.
Kane, K. M., Lorenz, C. R., Heilman, D. M. \& Lemke, F. R. (1998). Inorg. Chem. 37, 669-673.
Mitzel, N. W., Riede, J. \& Schmidbaur, H. (1997). Acta Cryst. C53, 1335-1337. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). XP in SHELXLTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

